Comments by Rafael Repullo on

Optimal Deposit Insurance

Eduardo Dávila and Itay Goldstein

Financial Intermediation Research Society Conference Lisbon, 3 June 2016

Purpose of paper

- Characterize optimal deposit insurance
 - \rightarrow In an environment with fundamental-based bank runs
 - \rightarrow Taking explicitly into account fiscal costs of insurance
- Provide quantitative guidance to set deposit insurance optimally
 - \rightarrow Formula for that embeds key trade-offs
 - \rightarrow Calibration for US data

Setup

- Variation of Diamond and Dybvig (1983)
 - \rightarrow Return of long asset at t = 2 is stochastic
 - \rightarrow Return is observable at t = 1: source of fundamental runs
 - \rightarrow But not verifiable: demand deposit contracts
- Representative bank maximizes depositors' expected utility
 - \rightarrow Insurance against idiosyncratic (preference) shocks
 - \rightarrow In the presence of aggregate (asset return) shocks
- To deal with multiple (panic-based) runs
 - \rightarrow Equilibrium selection with sunspots

Main comments

- Highly desirable goal: provide practical advise to policymakers
 - \rightarrow Could be applied to other areas of regulation
 - \rightarrow For example, capital requirements
- However, model and formal analysis are pretty complicated
 - \rightarrow It is not easy to see what is driving the results
 - \rightarrow How robust are they?
- More generally, can we put so much trust in our models?
 - \rightarrow To provide such precise advice to policymakers

Comments on two assumptions

• Early consumers are repaid first in case of a bank run

 \rightarrow Against assumption of unobservable idiosyncratic shocks

- Taxes to cover deposit insurance are levied on late consumers
 - \rightarrow They pay in taxes what they receive in insurance
 - \rightarrow Why not tax both agents (or other agents in the economy)?
 - \rightarrow Or charge deposit insurance premia ex ante?

What am I going to do?

- Consider a simplified version of the model
- Using specific parameterization + numerical solutions
 - \rightarrow Characterize equilibrium with deposit insurance
 - \rightarrow Compute optimal deposit insurance
- Assumptions
 - \rightarrow Early and late consumers get the same in a bank run
 - \rightarrow Reduced form modeling of the cost of taxation
 - \rightarrow Focus on fundamental runs (no sunspots)

Depositors

- Unit endowment at t = 0 and zero endowments at t = 1, 2
- Storage technology with unit return
- Proportion of early consumers $\lambda = 1/2$
- CRRA utility function $u'(c) = c^{-\gamma}$, with $\gamma > 0$

Banks

• Investment returns

$$1 \xrightarrow{\qquad} \tilde{R} = \begin{cases} R_H, \text{ with probability } s \\ R_L, \text{ with probability } 1 - s \\ 1 \\ \text{with } R_H > 1 > R_L \end{cases}$$

- At t = 0 agents know that $s \sim U(0,1)$
- At t = 1 agents observe s (but as in the model s is not verifiable)

Optimal contract without insurance (i)

• Bank offers a contract with promised payments

$$c_{1} \text{ and } c_{2} = \begin{cases} \frac{(1 - \lambda c_{1})R_{H}}{1 - \lambda} = (2 - c_{1})R_{H} = c_{2H}, \text{ with prob. } s \\ \frac{(1 - \lambda c_{1})R_{L}}{1 - \lambda} = (2 - c_{1})R_{L} = c_{2L}, \text{ with prob. } 1 - s \end{cases}$$

• Late consumers will run on the bank if

$$E(c_2) = su(c_{2H}) + (1 - s)u(c_{2L}) < u(c_1)$$

$$\rightarrow s < \overline{s} = \frac{u(c_1) - u(c_{2L})}{u(c_{2H}) - u(c_{2L})}$$

 \rightarrow In which case all consumers get $c_1 = c_2 = 1$

Optimal contract without insurance (ii)

• There is a bank run with probability $\overline{s} = \Pr(s < \overline{s})$

 \rightarrow Early and late consumers get u(1)

• There is no bank run with probability $1 - \overline{s} = \Pr(s \ge \overline{s})$

 \rightarrow Early consumers get $u(c_1)$

 \rightarrow Late consumers get

$$E(s|s \ge \overline{s})u(c_{2H}) + E(1-s|s \ge \overline{s})u(c_{2L})$$
$$= \frac{1+\overline{s}}{2}u(c_{2H}) + \frac{1-\overline{s}}{2}u(c_{2L})$$

Optimal contract without insurance (iii)

• Banks maximize

$$V(c_{1}) = \overline{s}u(1) + (1 - \overline{s})\left\{\frac{1}{2}u(c_{1}) + \frac{1}{2}\left[\frac{1 + \overline{s}}{2}u(c_{2H}) + \frac{1 - \overline{s}}{2}u(c_{2L})\right]\right\}$$

where
$$c_{2H} = (2 - c_1)R_H$$
 and $c_{2L} = (2 - c_1)R_L$

Optimal contract with insurance (i)

• Suppose that insurer pays $\delta > 0$ to late consumers when

 \rightarrow The return on the investment at t = 2 is R_L

• Late consumers will now run on the bank if

$$E(c_{2}) = su(c_{2H}) + (1 - s)u(c_{2L} + \delta) < u(c_{1})$$

$$\rightarrow s < \overline{s} = \frac{u(c_{1}) - u(c_{2L} + \delta)}{u(c_{2H}) - u(c_{2L} + \delta)}$$

 \rightarrow In which case all consumers get $c_1 = c_2 = 1$

 \rightarrow Insurer pays zero when there is a bank run

Optimal contract with insurance (ii)

• Banks maximize

$$V(c_{1}) = \overline{s}u(1) + (1 - \overline{s})\left\{\frac{1}{2}u(c_{1}) + \frac{1}{2}\left[\frac{1 + \overline{s}}{2}u(c_{2H}) + \frac{1 - \overline{s}}{2}u(c_{2L} + \delta)\right]\right\}$$

where
$$c_{2H} = (2 - c_1)R_H$$
 and $c_{2L} = (2 - c_1)R_L$

Numerical illustration

- Assumptions
 - \rightarrow Risk aversion $\gamma_L = 2$ (and $\gamma_H = 5$)

 $\rightarrow R_H = 2$ and $R_L = 0.8$

- \bullet Compute effect of deposit insurance δ on
 - \rightarrow Early and late consumption (if no run) c_1, c_{2H}, c_{2L}
 - \rightarrow Certainty equivalent \hat{c}_2 s.t. $u(\hat{c}_2) = su(c_{2H}) + (1-s)u(c_{2L})$
 - \rightarrow Probability of run $\overline{s} = \Pr(s < \overline{s})$
- Compute optimal deposit insurance

Equilibrium consumption without insurance

Equilibrium consumption with insurance

Equilibrium consumption with insurance

Effect of insurance on probability of run

Optimal deposit insurance

• Tax revenues needed to cover expected insurance payouts

$$T(\delta) = (1 - \overline{s})\frac{1}{2}E(1 - s|s \ge \overline{s})\delta = \left(\frac{1 - \overline{s}}{2}\right)^2\delta$$

• Social welfare

$$W(\delta) = V(c_1(\delta)) - (1 + \kappa)T(\delta)$$

 \rightarrow where κ denotes the net social cost of public funds

• Notice that $u'(c) = c^{-\gamma}$ implies u'(1) = 1

 \rightarrow Marginal utility of early consumers is approximately 1

Optimal deposit insurance

Concluding remarks

• Simplified version of model

 \rightarrow Provides intuition for results of paper

- \rightarrow Without assumption that early consumers are repaid first
- Numerical results are very sensitive to parameter values

 \rightarrow For example, the effect of risk aversion γ

• Diamond and Dybvig (1983) is a very special model

 \rightarrow Is it useful to give precise policy recommendations?