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Purpose of paper

• Characterize optimal deposit insurance

→ In an environment with fundamental-based bank runs

→ Taking explicitly into account fiscal costs of insurance

• Provide quantitative guidance to set deposit insurance optimally

→ Formula for that embeds key trade-offs

→ Calibration for US data



Setup

• Variation of Diamond and Dybvig (1983)

→ Return of long asset at t = 2 is stochastic

→ Return is observable at t = 1: source of fundamental runs

→ But not verifiable: demand deposit contracts

• Representative bank maximizes depositors’ expected utility

→ Insurance against idiosyncratic (preference) shocks

→ In the presence of aggregate (asset return) shocks

• To deal with multiple (panic-based) runs

→ Equilibrium selection with sunspots 



Main comments

• Highly desirable goal: provide practical advise to policymakers

→ Could be applied to other areas of regulation

→ For example, capital requirements

• However, model and formal analysis are pretty complicated

→ It is not easy to see what is driving the results

→ How robust are they?

• More generally, can we put so much trust in our models?

→ To provide such precise advice to policymakers



Comments on two assumptions

• Early consumers are repaid first in case of a bank run

→Against assumption of unobservable idiosyncratic shocks

• Taxes to cover deposit insurance are levied on late consumers 

→ They pay in taxes what they receive in insurance

→ Why not tax both agents (or other agents in the economy)?

→ Or charge deposit insurance premia ex ante? 



What am I going to do?

• Consider a simplified version of the model

• Using specific parameterization + numerical solutions 

→ Characterize equilibrium with deposit insurance

→ Compute optimal deposit insurance

• Assumptions

→ Early and late consumers get the same in a bank run

→ Reduced form modeling of the cost of taxation

→ Focus on fundamental runs (no sunspots)



Depositors

• Unit endowment at t = 0 and zero endowments at t = 1, 2

• Storage technology with unit return

• Proportion of early consumers 

• CRRA utility function
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Banks

• Investment returns

• At t = 0 agents know that

• At t =1 agents observe s (but as in the model s is not verifiable)
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Optimal contract without insurance (i)

• Bank offers a contract with promised payments  

• Late consumers will run on the bank if 

→ In which case all consumers get 
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• There is a bank run with probability

→ Early and late consumers get

• There is no bank run with probability

→ Early consumers get

→ Late consumers get 
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Optimal contract without insurance (ii)
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• Banks maximize

Optimal contract without insurance (iii)
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Optimal contract with insurance (i)

• Suppose that insurer pays           to late consumers when

→ The return on the investment at t = 2 is 

• Late consumers will now run on the bank if 

→ In which case all consumers get

→ Insurer pays zero when there is a bank run
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• Banks maximize

Optimal contract with insurance (ii)
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Numerical illustration

• Assumptions

→ Risk aversion 

→

• Compute effect of deposit insurance δ on

→ Early and late consumption (if no run)

→ Certainty equivalent 

→ Probability of run

• Compute optimal deposit insurance
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Equilibrium consumption without insurance
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Equilibrium consumption with insurance
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Equilibrium consumption with insurance
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Effect of insurance on probability of run
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Optimal deposit insurance

• Tax revenues needed to cover expected insurance payouts

• Social welfare

→ where κ denotes the net social cost of public funds

• Notice that

→ Marginal utility of early consumers is approximately 1
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Optimal deposit insurance
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Concluding remarks

• Simplified version of model

→ Provides intuition for results of paper

→ Without assumption that early consumers are repaid first

• Numerical results are very sensitive to parameter values

→ For example, the effect of risk aversion γ

• Diamond and Dybvig (1983) is a very special model

→ Is it useful to give precise policy recommendations?


